MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. Nickel 617

C67600 bronze belongs to the copper alloys classification, while nickel 617 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 13 to 33
40
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
80
Shear Strength, MPa 270 to 350
510
Tensile Strength: Ultimate (UTS), MPa 430 to 570
740
Tensile Strength: Yield (Proof), MPa 170 to 380
280

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 890
1380
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 330
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
190
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 20
24
Strength to Weight: Bending, points 16 to 19
21
Thermal Diffusivity, mm2/s 35
3.5
Thermal Shock Resistance, points 14 to 19
21

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 57 to 60
0 to 0.5
Iron (Fe), % 0.4 to 1.3
0 to 3.0
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0