MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. Titanium 15-3-3-3

C67600 bronze belongs to the copper alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 13 to 33
5.7 to 8.0
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
39
Shear Strength, MPa 270 to 350
660 to 810
Tensile Strength: Ultimate (UTS), MPa 430 to 570
1120 to 1390
Tensile Strength: Yield (Proof), MPa 170 to 380
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
430
Melting Completion (Liquidus), °C 890
1620
Melting Onset (Solidus), °C 870
1560
Specific Heat Capacity, J/kg-K 380
520
Thermal Conductivity, W/m-K 110
8.1
Thermal Expansion, µm/m-K 21
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
40
Density, g/cm3 8.0
4.8
Embodied Carbon, kg CO2/kg material 2.8
59
Embodied Energy, MJ/kg 47
950
Embodied Water, L/kg 330
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
78 to 89
Stiffness to Weight: Axial, points 7.2
12
Stiffness to Weight: Bending, points 20
32
Strength to Weight: Axial, points 15 to 20
64 to 80
Strength to Weight: Bending, points 16 to 19
50 to 57
Thermal Diffusivity, mm2/s 35
3.2
Thermal Shock Resistance, points 14 to 19
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.5 to 3.5
Copper (Cu), % 57 to 60
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.4 to 1.3
0 to 0.25
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Tin (Sn), % 0.5 to 1.5
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0
0 to 0.4