MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. N06219 Nickel

C67600 bronze belongs to the copper alloys classification, while N06219 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
48
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
79
Shear Strength, MPa 270 to 350
520
Tensile Strength: Ultimate (UTS), MPa 430 to 570
730
Tensile Strength: Yield (Proof), MPa 170 to 380
300

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 27
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
60
Density, g/cm3 8.0
8.5
Embodied Carbon, kg CO2/kg material 2.8
11
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 330
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
280
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
230
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 15 to 20
24
Strength to Weight: Bending, points 16 to 19
21
Thermal Diffusivity, mm2/s 35
2.7
Thermal Shock Resistance, points 14 to 19
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 57 to 60
0 to 0.5
Iron (Fe), % 0.4 to 1.3
2.0 to 4.0
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.5
0
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0