MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. S20433 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 13 to 33
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 350
440
Tensile Strength: Ultimate (UTS), MPa 430 to 570
630
Tensile Strength: Yield (Proof), MPa 170 to 380
270

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
900
Melting Completion (Liquidus), °C 890
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
23
Strength to Weight: Bending, points 16 to 19
21
Thermal Diffusivity, mm2/s 35
4.0
Thermal Shock Resistance, points 14 to 19
14

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 57 to 60
1.5 to 3.5
Iron (Fe), % 0.4 to 1.3
64.1 to 72.4
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0