MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. S32050 Stainless Steel

C67600 bronze belongs to the copper alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 13 to 33
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
81
Shear Strength, MPa 270 to 350
540
Tensile Strength: Ultimate (UTS), MPa 430 to 570
770
Tensile Strength: Yield (Proof), MPa 170 to 380
370

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.0
Embodied Energy, MJ/kg 47
81
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
290
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
330
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15 to 20
27
Strength to Weight: Bending, points 16 to 19
23
Thermal Diffusivity, mm2/s 35
3.3
Thermal Shock Resistance, points 14 to 19
17

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 57 to 60
0 to 0.4
Iron (Fe), % 0.4 to 1.3
43.1 to 51.8
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.5
0
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0