MakeItFrom.com
Menu (ESC)

C68000 Brass vs. AISI 445 Stainless Steel

C68000 brass belongs to the copper alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 27
25
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 390
480
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
950
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 96
21
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
38
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
98
Resilience: Unit (Modulus of Resilience), kJ/m3 95
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
17
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 31
5.6
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 56 to 60
0.3 to 0.6
Iron (Fe), % 0.25 to 1.3
74.9 to 80.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.0
Nickel (Ni), % 0.2 to 0.8
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0