MakeItFrom.com
Menu (ESC)

C68000 Brass vs. AWS E320LR

C68000 brass belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 27
34
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
580

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Melting Completion (Liquidus), °C 880
1410
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 48
87
Embodied Water, L/kg 330
220

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
20
Strength to Weight: Bending, points 15
19
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 56 to 60
3.0 to 4.0
Iron (Fe), % 0.25 to 1.3
32.7 to 42.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.2 to 0.8
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.040 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0