MakeItFrom.com
Menu (ESC)

C68000 Brass vs. EN 1.6579 Steel

C68000 brass belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 27
11 to 14
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 390
850 to 980
Tensile Strength: Yield (Proof), MPa 140
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
440
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 96
39
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.7
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 48
22
Embodied Water, L/kg 330
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 95
950 to 2210
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
30 to 35
Strength to Weight: Bending, points 15
25 to 28
Thermal Diffusivity, mm2/s 31
11
Thermal Shock Resistance, points 13
25 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
94.2 to 96.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0.2 to 0.8
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.040 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0