MakeItFrom.com
Menu (ESC)

C68000 Brass vs. C81500 Copper

Both C68000 brass and C81500 copper are copper alloys. They have 58% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 27
17
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 390
350
Tensile Strength: Yield (Proof), MPa 140
280

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 880
1090
Melting Onset (Solidus), °C 870
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 96
320
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 48
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
56
Resilience: Unit (Modulus of Resilience), kJ/m3 95
330
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 14
11
Strength to Weight: Bending, points 15
12
Thermal Diffusivity, mm2/s 31
91
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 56 to 60
97.4 to 99.6
Iron (Fe), % 0.25 to 1.3
0 to 0.1
Lead (Pb), % 0 to 0.050
0 to 0.020
Manganese (Mn), % 0.010 to 0.5
0
Nickel (Ni), % 0.2 to 0.8
0
Silicon (Si), % 0.040 to 0.15
0 to 0.15
Tin (Sn), % 0.75 to 1.1
0 to 0.1
Zinc (Zn), % 35.6 to 42.8
0 to 0.1
Residuals, % 0
0 to 0.5