MakeItFrom.com
Menu (ESC)

C68000 Brass vs. N08120 Nickel

C68000 brass belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 27
34
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 390
700
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 96
11
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
45
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.8
7.2
Embodied Energy, MJ/kg 48
100
Embodied Water, L/kg 330
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
190
Resilience: Unit (Modulus of Resilience), kJ/m3 95
240
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14
24
Strength to Weight: Bending, points 15
21
Thermal Diffusivity, mm2/s 31
3.0
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 56 to 60
0 to 0.5
Iron (Fe), % 0.25 to 1.3
21 to 41.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0.2 to 0.8
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0