MakeItFrom.com
Menu (ESC)

C68000 Brass vs. R58150 Titanium

C68000 brass belongs to the copper alloys classification, while R58150 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
140
Elongation at Break, % 27
13
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 390
770
Tensile Strength: Yield (Proof), MPa 140
550

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
320
Melting Completion (Liquidus), °C 880
1760
Melting Onset (Solidus), °C 870
1700
Specific Heat Capacity, J/kg-K 390
500
Thermal Expansion, µm/m-K 21
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
48
Density, g/cm3 8.0
5.4
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 48
480
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
94
Resilience: Unit (Modulus of Resilience), kJ/m3 95
1110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
32
Strength to Weight: Axial, points 14
40
Strength to Weight: Bending, points 15
35
Thermal Shock Resistance, points 13
48

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 56 to 60
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.25 to 1.3
0 to 0.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 0.2 to 0.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.040 to 0.15
0
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
83.5 to 86
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0