MakeItFrom.com
Menu (ESC)

C68000 Brass vs. S32750 Stainless Steel

C68000 brass belongs to the copper alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 27
17
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 390
860
Tensile Strength: Yield (Proof), MPa 140
590

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 96
15
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
21
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 48
56
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
130
Resilience: Unit (Modulus of Resilience), kJ/m3 95
860
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
31
Strength to Weight: Bending, points 15
26
Thermal Diffusivity, mm2/s 31
4.0
Thermal Shock Resistance, points 13
25

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 56 to 60
0 to 0.5
Iron (Fe), % 0.25 to 1.3
58.1 to 66.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0.2 to 0.8
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.040 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0