MakeItFrom.com
Menu (ESC)

C68100 Brass vs. AISI 441 Stainless Steel

C68100 brass belongs to the copper alloys classification, while AISI 441 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 29
23
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 380
470
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
910
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 98
23
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 27
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
92
Resilience: Unit (Modulus of Resilience), kJ/m3 94
190
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 15
17
Thermal Diffusivity, mm2/s 32
6.1
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
76 to 82.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
0.1 to 0.5
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0