MakeItFrom.com
Menu (ESC)

C68100 Brass vs. AISI 442 Stainless Steel

C68100 brass belongs to the copper alloys classification, while AISI 442 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 29
23
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 380
580
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
960
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 98
22
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 27
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 47
32
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
250
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 32
5.8
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
18 to 23
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
74.1 to 82
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0