MakeItFrom.com
Menu (ESC)

C68100 Brass vs. EN 1.4419 Stainless Steel

C68100 brass belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 29
11 to 17
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 380
660 to 1590
Tensile Strength: Yield (Proof), MPa 140
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
790
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 98
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 27
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 47
30
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 94
350 to 3920
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
24 to 57
Strength to Weight: Bending, points 15
22 to 39
Thermal Diffusivity, mm2/s 32
8.1
Thermal Shock Resistance, points 13
23 to 55

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
82 to 86
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0