MakeItFrom.com
Menu (ESC)

C68100 Brass vs. EN 1.4482 Stainless Steel

C68100 brass belongs to the copper alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 29
34
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 380
770 to 800
Tensile Strength: Yield (Proof), MPa 140
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 890
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 98
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 94
690 to 820
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
28 to 29
Strength to Weight: Bending, points 15
24 to 25
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 13
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 56 to 60
0 to 1.0
Iron (Fe), % 0.25 to 1.3
66.1 to 74.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0