MakeItFrom.com
Menu (ESC)

C68100 Brass vs. N07716 Nickel

C68100 brass belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 29
34
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 380
860
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 890
1480
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 98
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 27
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.8
13
Embodied Energy, MJ/kg 47
190
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
240
Resilience: Unit (Modulus of Resilience), kJ/m3 94
300
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 13
28
Strength to Weight: Bending, points 15
24
Thermal Diffusivity, mm2/s 32
2.8
Thermal Shock Resistance, points 13
24

Alloy Composition

Aluminum (Al), % 0 to 0.010
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
0 to 11.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.040 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0