MakeItFrom.com
Menu (ESC)

C68300 Brass vs. 6162 Aluminum

C68300 brass belongs to the copper alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68300 brass and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 15
6.7 to 9.1
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 260
170 to 180
Tensile Strength: Ultimate (UTS), MPa 430
290 to 300
Tensile Strength: Yield (Proof), MPa 260
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 900
640
Melting Onset (Solidus), °C 890
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
190
Thermal Expansion, µm/m-K 20
23

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 340
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 330
510 to 550
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 15
29 to 30
Strength to Weight: Bending, points 16
36
Thermal Diffusivity, mm2/s 38
79
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Antimony (Sb), % 0.3 to 1.0
0
Cadmium (Cd), % 0 to 0.010
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 59 to 63
0 to 0.2
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0.3 to 1.0
0.4 to 0.8
Tin (Sn), % 0.050 to 0.2
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 34.2 to 40.4
0 to 0.25
Residuals, % 0
0 to 0.15