MakeItFrom.com
Menu (ESC)

C68300 Brass vs. 7050 Aluminum

C68300 brass belongs to the copper alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68300 brass and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 15
2.2 to 12
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Shear Strength, MPa 260
280 to 330
Tensile Strength: Ultimate (UTS), MPa 430
490 to 570
Tensile Strength: Yield (Proof), MPa 260
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 180
370
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
490
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 20
24

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
3.1
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 340
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 330
1110 to 1760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
45
Strength to Weight: Axial, points 15
45 to 51
Strength to Weight: Bending, points 16
45 to 50
Thermal Diffusivity, mm2/s 38
54
Thermal Shock Resistance, points 14
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Antimony (Sb), % 0.3 to 1.0
0
Cadmium (Cd), % 0 to 0.010
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 59 to 63
2.0 to 2.6
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0.3 to 1.0
0 to 0.12
Tin (Sn), % 0.050 to 0.2
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 34.2 to 40.4
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15