MakeItFrom.com
Menu (ESC)

C68300 Brass vs. AISI 384 Stainless Steel

C68300 brass belongs to the copper alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C68300 brass and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 430
480

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 120
910
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 340
150

Common Calculations

Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 14
11

Alloy Composition

Antimony (Sb), % 0.3 to 1.0
0
Cadmium (Cd), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0
60.9 to 68
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.050 to 0.2
0
Zinc (Zn), % 34.2 to 40.4
0
Residuals, % 0 to 0.5
0