MakeItFrom.com
Menu (ESC)

C68300 Brass vs. C82500 Copper

Both C68300 brass and C82500 copper are copper alloys. They have 62% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68300 brass and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 15
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 430
550 to 1100
Tensile Strength: Yield (Proof), MPa 260
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 120
280
Melting Completion (Liquidus), °C 900
980
Melting Onset (Solidus), °C 890
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 20
17

Otherwise Unclassified Properties

Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 330
400 to 4000
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 15
18 to 35
Strength to Weight: Bending, points 16
17 to 27
Thermal Diffusivity, mm2/s 38
38
Thermal Shock Resistance, points 14
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0.3 to 1.0
0
Beryllium (Be), % 0
1.9 to 2.3
Cadmium (Cd), % 0 to 0.010
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 59 to 63
95.3 to 97.8
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.090
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.3 to 1.0
0.2 to 0.35
Tin (Sn), % 0.050 to 0.2
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 34.2 to 40.4
0 to 0.1
Residuals, % 0
0 to 0.5