MakeItFrom.com
Menu (ESC)

C68400 Brass vs. 7204 Aluminum

C68400 brass belongs to the copper alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68400 brass and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 18
11 to 13
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 330
130 to 220
Tensile Strength: Ultimate (UTS), MPa 540
220 to 380
Tensile Strength: Yield (Proof), MPa 310
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 130
210
Melting Completion (Liquidus), °C 840
640
Melting Onset (Solidus), °C 820
520
Specific Heat Capacity, J/kg-K 400
880
Thermal Conductivity, W/m-K 66
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
39
Electrical Conductivity: Equal Weight (Specific), % IACS 99
120

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 460
110 to 710
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
47
Strength to Weight: Axial, points 19
21 to 36
Strength to Weight: Bending, points 19
28 to 40
Thermal Diffusivity, mm2/s 21
58
Thermal Shock Resistance, points 18
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.5
90.5 to 94.8
Boron (B), % 0.0010 to 0.030
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 59 to 64
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.35
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0.2 to 1.5
0.2 to 0.7
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0
Silicon (Si), % 1.5 to 2.5
0 to 0.3
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 28.6 to 39.3
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15