MakeItFrom.com
Menu (ESC)

C68400 Brass vs. ACI-ASTM CD3MWCuN Steel

C68400 brass belongs to the copper alloys classification, while ACI-ASTM CD3MWCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is ACI-ASTM CD3MWCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
29
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 540
790
Tensile Strength: Yield (Proof), MPa 310
500

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.2
Embodied Energy, MJ/kg 47
58
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
200
Resilience: Unit (Modulus of Resilience), kJ/m3 460
620
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
28
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 21
4.2
Thermal Shock Resistance, points 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 59 to 64
0.5 to 1.0
Iron (Fe), % 0 to 1.0
56.6 to 65.3
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0.030 to 0.3
0 to 0.030
Silicon (Si), % 1.5 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.5
0
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0