MakeItFrom.com
Menu (ESC)

C68400 Brass vs. AISI 347 Stainless Steel

C68400 brass belongs to the copper alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
34 to 46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 330
430 to 460
Tensile Strength: Ultimate (UTS), MPa 540
610 to 690
Tensile Strength: Yield (Proof), MPa 310
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 130
870
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
16
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 47
52
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 460
150 to 310
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
22 to 25
Strength to Weight: Bending, points 19
20 to 22
Thermal Diffusivity, mm2/s 21
4.3
Thermal Shock Resistance, points 18
13 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
64.1 to 74
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0.030 to 0.3
0 to 0.045
Silicon (Si), % 1.5 to 2.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0