MakeItFrom.com
Menu (ESC)

C68400 Brass vs. AISI 403 Stainless Steel

C68400 brass belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
16 to 25
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 330
340 to 480
Tensile Strength: Ultimate (UTS), MPa 540
530 to 780
Tensile Strength: Yield (Proof), MPa 310
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 130
740
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
28
Thermal Expansion, µm/m-K 20
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 47
27
Embodied Water, L/kg 320
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460
210 to 840
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
19 to 28
Strength to Weight: Bending, points 19
19 to 24
Thermal Diffusivity, mm2/s 21
7.6
Thermal Shock Resistance, points 18
20 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
84.7 to 88.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0