MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.0303 Steel

C68400 brass belongs to the copper alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
84 to 120
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
12 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 330
220 to 260
Tensile Strength: Ultimate (UTS), MPa 540
290 to 410
Tensile Strength: Yield (Proof), MPa 310
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1470
Melting Onset (Solidus), °C 820
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
53
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 460
110 to 270
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
10 to 15
Strength to Weight: Bending, points 19
12 to 16
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
9.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.5
0.020 to 0.060
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.020 to 0.060
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
99.335 to 99.71
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.25 to 0.4
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.020
Silicon (Si), % 1.5 to 2.5
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0