MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.4110 Stainless Steel

C68400 brass belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
11 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 330
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 540
770 to 1720
Tensile Strength: Yield (Proof), MPa 310
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 130
790
Melting Completion (Liquidus), °C 840
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 47
33
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 460
480 to 4550
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
28 to 62
Strength to Weight: Bending, points 19
24 to 41
Thermal Diffusivity, mm2/s 21
8.1
Thermal Shock Resistance, points 18
27 to 60

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
81.4 to 86
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0