MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.6579 Steel

C68400 brass belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
260 to 290
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 540
850 to 980
Tensile Strength: Yield (Proof), MPa 310
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
440
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 320
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460
950 to 2210
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
30 to 35
Strength to Weight: Bending, points 19
25 to 28
Thermal Diffusivity, mm2/s 21
11
Thermal Shock Resistance, points 18
25 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
94.2 to 96.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0 to 0.5
1.4 to 1.7
Phosphorus (P), % 0.030 to 0.3
0 to 0.025
Silicon (Si), % 1.5 to 2.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0