MakeItFrom.com
Menu (ESC)

C68400 Brass vs. SAE-AISI 1045 Steel

C68400 brass belongs to the copper alloys classification, while SAE-AISI 1045 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is SAE-AISI 1045 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
13 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 330
380 to 410
Tensile Strength: Ultimate (UTS), MPa 540
620 to 680
Tensile Strength: Yield (Proof), MPa 310
330 to 580

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
51
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
84 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 460
300 to 900
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
22 to 24
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
20 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.43 to 0.5
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
98.5 to 99
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0