MakeItFrom.com
Menu (ESC)

C68400 Brass vs. SAE-AISI 1065 Steel

C68400 brass belongs to the copper alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
210 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 330
430 to 470
Tensile Strength: Ultimate (UTS), MPa 540
710 to 780
Tensile Strength: Yield (Proof), MPa 310
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
51
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
11
Electrical Conductivity: Equal Weight (Specific), % IACS 99
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 460
490 to 820
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
25 to 28
Strength to Weight: Bending, points 19
23 to 24
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
25 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.6 to 0.7
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
98.3 to 98.8
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0