MakeItFrom.com
Menu (ESC)

C68400 Brass vs. C19000 Copper

Both C68400 brass and C19000 copper are copper alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 18
2.5 to 50
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 330
170 to 390
Tensile Strength: Ultimate (UTS), MPa 540
260 to 760
Tensile Strength: Yield (Proof), MPa 310
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 840
1080
Melting Onset (Solidus), °C 820
1040
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 66
250
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
60
Electrical Conductivity: Equal Weight (Specific), % IACS 99
61

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
89 to 1730
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
8.2 to 24
Strength to Weight: Bending, points 19
10 to 21
Thermal Diffusivity, mm2/s 21
73
Thermal Shock Resistance, points 18
9.3 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Copper (Cu), % 59 to 64
96.9 to 99
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0 to 0.090
0 to 0.050
Manganese (Mn), % 0.2 to 1.5
0
Nickel (Ni), % 0 to 0.5
0.9 to 1.3
Phosphorus (P), % 0.030 to 0.3
0.15 to 0.35
Silicon (Si), % 1.5 to 2.5
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0 to 0.8
Residuals, % 0
0 to 0.5