MakeItFrom.com
Menu (ESC)

C68400 Brass vs. C35000 Brass

Both C68400 brass and C35000 brass are copper alloys. They have a very high 96% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is C35000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 540
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 130
120
Melting Completion (Liquidus), °C 840
920
Melting Onset (Solidus), °C 820
890
Specific Heat Capacity, J/kg-K 400
380
Thermal Conductivity, W/m-K 66
120
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
26
Electrical Conductivity: Equal Weight (Specific), % IACS 99
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 320
320

Common Calculations

Stiffness to Weight: Axial, points 7.5
7.1
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 19
12 to 22
Strength to Weight: Bending, points 19
13 to 21
Thermal Diffusivity, mm2/s 21
37
Thermal Shock Resistance, points 18
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Copper (Cu), % 59 to 64
60 to 63
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0 to 0.090
0.8 to 2.0
Manganese (Mn), % 0.2 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0
Silicon (Si), % 1.5 to 2.5
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
34.5 to 39.2
Residuals, % 0
0 to 0.4