MakeItFrom.com
Menu (ESC)

C68400 Brass vs. S41425 Stainless Steel

C68400 brass belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
280
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 330
570
Tensile Strength: Ultimate (UTS), MPa 540
920
Tensile Strength: Yield (Proof), MPa 310
750

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
16
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
150
Resilience: Unit (Modulus of Resilience), kJ/m3 460
1420
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
33
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 21
4.4
Thermal Shock Resistance, points 18
33

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 59 to 64
0 to 0.3
Iron (Fe), % 0 to 1.0
74 to 81.9
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.5
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0.030 to 0.3
0 to 0.020
Silicon (Si), % 1.5 to 2.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0