MakeItFrom.com
Menu (ESC)

C68400 Brass vs. S42035 Stainless Steel

C68400 brass belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 330
390
Tensile Strength: Ultimate (UTS), MPa 540
630
Tensile Strength: Yield (Proof), MPa 310
430

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 47
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
100
Resilience: Unit (Modulus of Resilience), kJ/m3 460
460
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 21
7.2
Thermal Shock Resistance, points 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
78.1 to 85
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0 to 0.5
1.0 to 2.5
Phosphorus (P), % 0.030 to 0.3
0 to 0.045
Silicon (Si), % 1.5 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0