MakeItFrom.com
Menu (ESC)

C68400 Brass vs. S82122 Stainless Steel

C68400 brass belongs to the copper alloys classification, while S82122 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 330
460
Tensile Strength: Ultimate (UTS), MPa 540
680
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 130
990
Melting Completion (Liquidus), °C 840
1420
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 47
37
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
210
Resilience: Unit (Modulus of Resilience), kJ/m3 460
510
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 21.5
Copper (Cu), % 59 to 64
0.5 to 1.5
Iron (Fe), % 0 to 1.0
68.9 to 75.4
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
1.5 to 2.5
Nitrogen (N), % 0
0.15 to 0.2
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0