MakeItFrom.com
Menu (ESC)

C68700 Brass vs. 3005 Aluminum

C68700 brass belongs to the copper alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68700 brass and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 390
140 to 270
Tensile Strength: Yield (Proof), MPa 140
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 970
660
Melting Onset (Solidus), °C 930
640
Specific Heat Capacity, J/kg-K 400
900
Thermal Conductivity, W/m-K 100
160
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
42
Electrical Conductivity: Equal Weight (Specific), % IACS 25
140

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.3
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 340
1180

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 90
18 to 390
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 13
14 to 27
Strength to Weight: Bending, points 14
21 to 33
Thermal Diffusivity, mm2/s 30
64
Thermal Shock Resistance, points 13
6.0 to 12

Alloy Composition

Aluminum (Al), % 1.8 to 2.5
95.7 to 98.8
Arsenic (As), % 0.020 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 76 to 79
0 to 0.3
Iron (Fe), % 0 to 0.060
0 to 0.7
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Silicon (Si), % 0
0 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 17.8 to 22.2
0 to 0.25
Residuals, % 0
0 to 0.15