MakeItFrom.com
Menu (ESC)

C68700 Brass vs. 7108A Aluminum

C68700 brass belongs to the copper alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68700 brass and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 390
350
Tensile Strength: Yield (Proof), MPa 140
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 190
380
Maximum Temperature: Mechanical, °C 160
210
Melting Completion (Liquidus), °C 970
630
Melting Onset (Solidus), °C 930
520
Specific Heat Capacity, J/kg-K 400
870
Thermal Conductivity, W/m-K 100
150
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
36
Electrical Conductivity: Equal Weight (Specific), % IACS 25
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 90
610 to 640
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 13
33 to 34
Strength to Weight: Bending, points 14
38
Thermal Diffusivity, mm2/s 30
59
Thermal Shock Resistance, points 13
15 to 16

Alloy Composition

Aluminum (Al), % 1.8 to 2.5
91.6 to 94.4
Arsenic (As), % 0.020 to 0.1
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 76 to 79
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.060
0 to 0.3
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 17.8 to 22.2
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15