MakeItFrom.com
Menu (ESC)

C68700 Brass vs. Sintered 2014 Aluminum

C68700 brass belongs to the copper alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68700 brass and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 390
140 to 290
Tensile Strength: Yield (Proof), MPa 140
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 190
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 970
650
Melting Onset (Solidus), °C 930
560
Specific Heat Capacity, J/kg-K 400
880
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
33
Electrical Conductivity: Equal Weight (Specific), % IACS 25
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 90
68 to 560
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 13
13 to 27
Strength to Weight: Bending, points 14
20 to 33
Thermal Diffusivity, mm2/s 30
51
Thermal Shock Resistance, points 13
6.2 to 13

Alloy Composition

Aluminum (Al), % 1.8 to 2.5
91.5 to 96.3
Arsenic (As), % 0.020 to 0.1
0
Copper (Cu), % 76 to 79
3.5 to 5.0
Iron (Fe), % 0 to 0.060
0
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.2 to 0.8
Silicon (Si), % 0
0 to 1.2
Zinc (Zn), % 17.8 to 22.2
0
Residuals, % 0
0 to 1.5