MakeItFrom.com
Menu (ESC)

C68800 Brass vs. AISI 301LN Stainless Steel

C68800 brass belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
23 to 51
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 380 to 510
450 to 670
Tensile Strength: Ultimate (UTS), MPa 570 to 890
630 to 1060
Tensile Strength: Yield (Proof), MPa 390 to 790
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 960
1430
Melting Onset (Solidus), °C 950
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 48
39
Embodied Water, L/kg 350
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
180 to 1520
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
22 to 38
Strength to Weight: Bending, points 19 to 25
21 to 30
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 30
14 to 24

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
70.7 to 77.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0