MakeItFrom.com
Menu (ESC)

C68800 Brass vs. ASTM A182 Grade F6b

C68800 brass belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 36
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 380 to 510
530
Tensile Strength: Ultimate (UTS), MPa 570 to 890
850
Tensile Strength: Yield (Proof), MPa 390 to 790
710

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 960
1450
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
8.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 48
30
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
1280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
30
Strength to Weight: Bending, points 19 to 25
26
Thermal Diffusivity, mm2/s 12
6.7
Thermal Shock Resistance, points 19 to 30
31

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0 to 0.5
Iron (Fe), % 0 to 0.2
81.2 to 87.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0