MakeItFrom.com
Menu (ESC)

C68800 Brass vs. AWS E320LR

C68800 brass belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 570 to 890
580

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Melting Completion (Liquidus), °C 960
1410
Melting Onset (Solidus), °C 950
1360
Specific Heat Capacity, J/kg-K 400
460
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
36
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 48
87
Embodied Water, L/kg 350
220

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 30
20
Strength to Weight: Bending, points 19 to 25
19
Thermal Shock Resistance, points 19 to 30
15

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
3.0 to 4.0
Iron (Fe), % 0 to 0.2
32.7 to 42.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0