MakeItFrom.com
Menu (ESC)

C68800 Brass vs. EN 1.4347 Stainless Steel

C68800 brass belongs to the copper alloys classification, while EN 1.4347 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is EN 1.4347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
23
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 570 to 890
660
Tensile Strength: Yield (Proof), MPa 390 to 790
480

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 960
1410
Melting Onset (Solidus), °C 950
1370
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
16
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 48
44
Embodied Water, L/kg 350
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
140
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
570
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
24
Strength to Weight: Bending, points 19 to 25
22
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 30
19

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 27
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
62.2 to 69.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0