MakeItFrom.com
Menu (ESC)

C68800 Brass vs. EN 1.4887 Stainless Steel

C68800 brass belongs to the copper alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
45
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 380 to 510
400
Tensile Strength: Ultimate (UTS), MPa 570 to 890
580
Tensile Strength: Yield (Proof), MPa 390 to 790
300

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 960
1390
Melting Onset (Solidus), °C 950
1350
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
39
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.7
Embodied Energy, MJ/kg 48
96
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
220
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
230
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 30
20
Strength to Weight: Bending, points 19 to 25
19
Thermal Diffusivity, mm2/s 12
3.2
Thermal Shock Resistance, points 19 to 30
14

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
34.2 to 45
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0