MakeItFrom.com
Menu (ESC)

C68800 Brass vs. EN 1.7365 Steel

C68800 brass belongs to the copper alloys classification, while EN 1.7365 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is EN 1.7365 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 36
18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 570 to 890
700
Tensile Strength: Yield (Proof), MPa 390 to 790
470

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 20
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
4.4
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 48
24
Embodied Water, L/kg 350
70

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
580
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
25
Strength to Weight: Bending, points 19 to 25
22
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 19 to 30
20

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
4.0 to 6.0
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0 to 0.3
Iron (Fe), % 0 to 0.2
91.2 to 94.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0