MakeItFrom.com
Menu (ESC)

C68800 Brass vs. SAE-AISI 1035 Steel

C68800 brass belongs to the copper alloys classification, while SAE-AISI 1035 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is SAE-AISI 1035 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 36
13 to 21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 380 to 510
360 to 370
Tensile Strength: Ultimate (UTS), MPa 570 to 890
570 to 620
Tensile Strength: Yield (Proof), MPa 390 to 790
300 to 530

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 950
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 48
18
Embodied Water, L/kg 350
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
250 to 740
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 30
20 to 22
Strength to Weight: Bending, points 19 to 25
19 to 21
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 19 to 30
18 to 20

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0.32 to 0.38
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
98.6 to 99.08
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0