MakeItFrom.com
Menu (ESC)

C68800 Brass vs. S20431 Stainless Steel

C68800 brass belongs to the copper alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
46
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 81 to 99
86
Shear Modulus, GPa 41
76
Shear Strength, MPa 380 to 510
500
Tensile Strength: Ultimate (UTS), MPa 570 to 890
710
Tensile Strength: Yield (Proof), MPa 390 to 790
350

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 960
1400
Melting Onset (Solidus), °C 950
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 48
36
Embodied Water, L/kg 350
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
270
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
310
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
25
Strength to Weight: Bending, points 19 to 25
23
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 30
15

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 18
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
1.5 to 3.5
Iron (Fe), % 0 to 0.2
66.1 to 74.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0