MakeItFrom.com
Menu (ESC)

C68800 Brass vs. S21904 Stainless Steel

C68800 brass belongs to the copper alloys classification, while S21904 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
17 to 51
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 380 to 510
510 to 620
Tensile Strength: Ultimate (UTS), MPa 570 to 890
700 to 1000
Tensile Strength: Yield (Proof), MPa 390 to 790
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 960
1400
Melting Onset (Solidus), °C 950
1350
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
14
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
15
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 48
43
Embodied Water, L/kg 350
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
380 to 2070
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 30
25 to 36
Strength to Weight: Bending, points 19 to 25
23 to 29
Thermal Diffusivity, mm2/s 12
3.8
Thermal Shock Resistance, points 19 to 30
15 to 21

Alloy Composition

Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 21.5
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
59.5 to 67.4
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0