MakeItFrom.com
Menu (ESC)

C69300 Brass vs. AISI 310 Stainless Steel

C69300 brass belongs to the copper alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
34 to 45
Poisson's Ratio 0.32
0.27
Rockwell B Hardness 84 to 88
82
Shear Modulus, GPa 41
78
Shear Strength, MPa 330 to 370
420 to 470
Tensile Strength: Ultimate (UTS), MPa 550 to 630
600 to 710
Tensile Strength: Yield (Proof), MPa 300 to 390
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 160
1040
Melting Completion (Liquidus), °C 880
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 38
15
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
25
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 45
61
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
170 to 310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
21 to 25
Strength to Weight: Bending, points 18 to 20
20 to 22
Thermal Diffusivity, mm2/s 12
3.9
Thermal Shock Resistance, points 19 to 22
14 to 17

Alloy Composition

Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
48.2 to 57
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0 to 0.1
19 to 22
Phosphorus (P), % 0.040 to 0.15
0 to 0.045
Silicon (Si), % 2.7 to 3.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0