MakeItFrom.com
Menu (ESC)

C69300 Brass vs. ASTM A182 Grade F24

C69300 brass belongs to the copper alloys classification, while ASTM A182 grade F24 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 15
23
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
74
Shear Strength, MPa 330 to 370
420
Tensile Strength: Ultimate (UTS), MPa 550 to 630
670
Tensile Strength: Yield (Proof), MPa 300 to 390
460

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 160
460
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 38
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
4.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
140
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
570
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
24
Strength to Weight: Bending, points 18 to 20
22
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 19 to 22
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
94.5 to 96.1
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.12
Phosphorus (P), % 0.040 to 0.15
0 to 0.020
Silicon (Si), % 2.7 to 3.4
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0