MakeItFrom.com
Menu (ESC)

C69300 Brass vs. EN 1.4122 Stainless Steel

C69300 brass belongs to the copper alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
14
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 330 to 370
480 to 520
Tensile Strength: Ultimate (UTS), MPa 550 to 630
790 to 850
Tensile Strength: Yield (Proof), MPa 300 to 390
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 38
15
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
520 to 1000
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
28 to 31
Strength to Weight: Bending, points 18 to 20
25 to 26
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 22
28 to 30

Alloy Composition

Carbon (C), % 0
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
77.2 to 83.4
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0.040 to 0.15
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0